COLD WEATHER CONCRETE-ROCK INTERFACE RESEARCH PROJECT

CENE 486C Presentation

Strong-Crete:

Mitch Geier Kenya Avina Joshua Barger **Technical Advisor & Client:**

Dr. Chun-Hsing Ho

Instructor:

Dr. Wilbert Odem

BACKGROUND

Figure 1: Concrete tunnel cross-section [1]

PROJECT UNDERSTANDING

- Create a Modified Representation of Tunnel Lining
 - Rock Type: Flagstone
 - Conventional Concrete
 - Modification: Admixture and Fiber Reinforcement
- Analyze the Effect of Cold Weather at the Interface
 - Modified Freeze-Thaw Cycles
 - Cause Fracture at the Seam
- Share Findings Based on Observations and Analytical Data

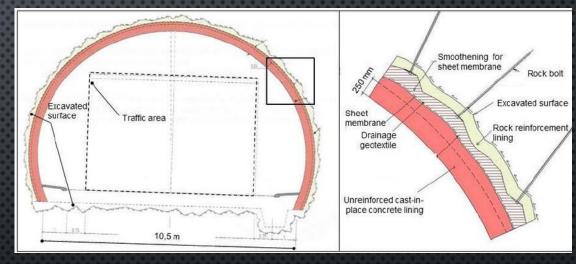


Figure 2: Concrete tunnel cross-section [2]

PAST FINDINGS

- Studies the Deterioration of Concrete Due to Moisture and Freezing Temperatures [3]
 - Freezing and Thawing is the Most Common Deteriorating Factor
- Research Shows That Admixtures Can Improve Resistance Concrete Subjected to Cold Weather [4]
- Most Common Point of Failure Occurs at Excavated Surface

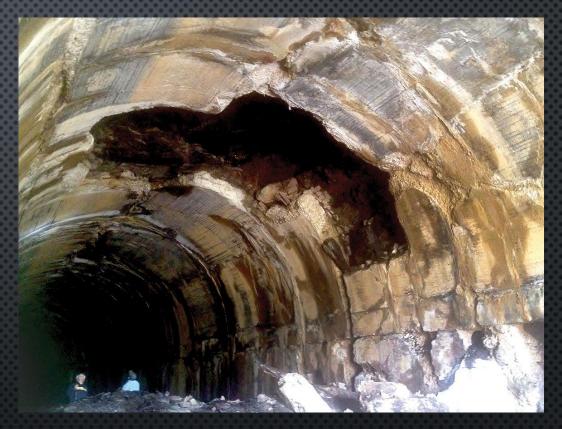


Figure 3: Cracking due to freezing and thawing over time [5]

METHODS

- Creation of Concrete-Rock Block Specimens
 - Constants: Concrete Design Mix
 - Variable: Rock Surface
- Cold-Weather Simulation
 - 300 Modified Freeze-Thaw Cycles
- Strength Testing
 - Modified Direct Compression
 - Modified Splitting Tensile

Figure 4: Freeze-thaw machine at coldest point in cycle [6]

SPECIMEN DESIGN

- Rough Saw cuts at 1/4"
- Semi-rough Saw cuts at ½"
- > Smooth No cuts

Figure 5: Flagstone surfaces: rough (left), semi-rough (middle), smooth (right) [7]

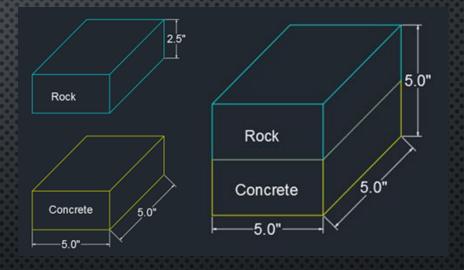


Figure 6: Model of Specimen Design [8]

PRELIMINARY TESTING

- Concrete Design Mix
- ASTM C116 Direct Compression

Figure 7: Specimens for preliminary testing, original design mix (farthest left), modification improvements (left to right) [9]

SPECIMEN CONCRETE MIX DESIGN

QUIKRETE

- Commercial grade blend
- ~ 20 -30% Cement [11]
- Water
 - Water/ Cement Ratio: 0.48
- AKKRO-7T
 - Liquid bonding admixture [12]
- FIBERMESH 150
 - Concrete reinforcement [13]

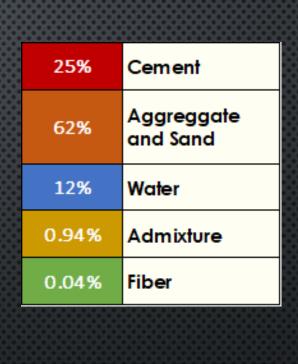


Figure 8: Design mix proportions [10]

CONCRETE TESTING RESULTS

- > 4 Day Curing Sample:
 - 3.6 KSI Failure

- > 7 Day Curing Sample:
 - 4.4 KSI Failure

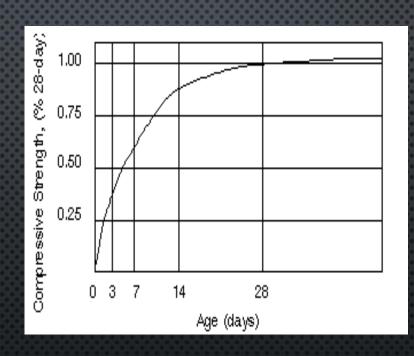


Figure 9: Compressive curing strength by percent [25]

Figure 10: 7 day cure compression failure [14]

COLD WEATHER SIMULATION

- Modified ASTM C666 Resistance of Concrete to Rapid Freezing and Thawing
 - Temperature 4 to -18°C
 - Total of 300 Cycles

Figures 11: Specimens undergoing freeze - thaw cycles [15]

INTERFACE STRENGTH TESTING

- Modified ASTM C496 Splitting Tensile Strength of Cylindrical Concrete Specimens
 - Testing Performed at 50-Cycle Intervals

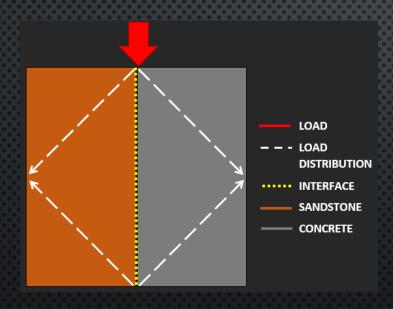


Figure 14: Illustration of the load distribution throughout the specimen [16]

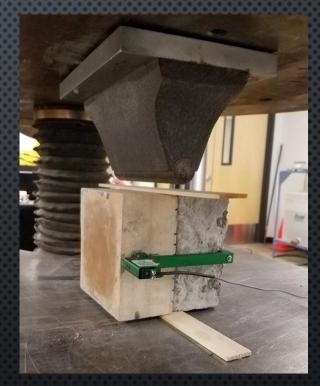


Figure 15: Specimen, before test, with placed extensometers on each side [17]

TENSION SPLIT TESTING

Figure 16: Specimen tensile failure [18]

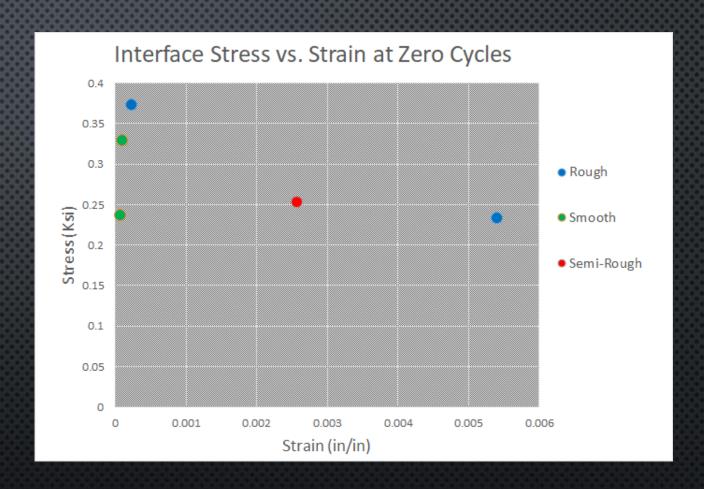


Figure 17: Stress vs strain data points of interface tension failure [19]

FAILURE ANALYSIS

Smooth

• 0.25 KSI

Semi-rough

• 0.24 KSI

Rough

• 0.18 KSI

Figure 18: The failed interfaces of the smooth, semi-rough, and rough specimen interfaces [20]

MATERIAL COSTS

Table 1: Predicted material costs

Item	Quantity	Unit	Rate	Total
Labor	843	hrs	\$159.00	\$43,419.50
Project Manager (PM)	242.5	hrs	\$75.00	\$18,187.50
Research Specialist (RS)	297.5	hrs	\$40.00	\$11,900.00
Laboratory Technician (LT)	303	hrs	\$44.00	\$13,332.00
Material	30	per item	\$405.79	\$876.82
Cement Type III- Quikrete	3	bag	\$23.09	\$69.27
Fine Sand- Quikrete	7	bag	\$3.72	\$26.04
Aggregate	1	cyd	\$15.00	\$15.00
FiberMesh150	4	bag	\$12.25	\$49.00
Admixture- Hydro Max	1	bag	\$97.95	\$97.95
Admixture- Tammsweld	2	bottle	\$122.09	\$244.18
Admixture- HEY'DI SB	2	bag	\$117.69	\$235.38
Cold Rolled Steel	10	cyd	\$14.00	\$140.00
Others	17		\$1,625.00	\$4,975.00
400K Tinius Olsen	10	day	\$300.00	\$3,000.00
Hydrolic Press	3	day	\$200.00	\$600.00
Software	1	each	\$1,000.00	\$1,000.00
Resources	3	each	\$125.00	\$375.00
Ove	\$49,271.32			

Table 2: Actual material costs

Item	Quantity	Unit	Rate	Total	
Labor	622	hrs	\$159.00	\$32,468.00	
Project Manager (PM)	192	hrs	\$75.00	\$14,400.00	
Research Specialist (RS)	213	hrs	\$40.00	\$8,520.00	
Laboratory Technician (LT)	217	hrs	\$44.00	\$9,548.00	
Material	18	per item	\$232.01	\$417.26	
Cement Type III- Quikrete	3	bag	\$23.09	\$69.27	
Fine Sand- Quikrete	7	bag	\$3.72	\$26.04	
Aggregate	1	cyd	\$15.00	\$15.00	
FiberMesh150	4	bag	\$12.25	\$49.00	
AKKRO-7T	1	bag	\$97.95	\$97.95	
Tile Saw Rental	2	day	\$80.00	\$160.00	
Others	9		\$1,580.00	\$2,880.00	
400K Tinius Olsen	4	day	\$300.00	\$1,200.00	
Hydrolic Press	3	day	\$200.00	\$600.00	
Software	1	each	\$1,000.00	\$1,000.00	
Resources	1	each	\$80.00	\$80.00	
Over	\$35,765.26				

STAFFING COSTS

Table 3: Preliminary staffing costs

Task	Cl assi fi cati on			Cummul ative	Labor Total
	PM	RS	LT		
	\$75/hr	\$40/hr	\$44/hr	(hrs)	(\$)
Project Start Up and Analysis	19	29	10	58	\$ 3,025.00
Laboratory Work	139.5	179.5	197	516	\$ 26,310.50
Data Collection	70	70	73	213	\$ 11,262.00
Data Analysis	5	13	18	36	\$ 1,337.00
Presentation of Deliverables	9	6	5	20	\$ 1,135.00
Total Service Distribution	242.5	297.5	303	843	\$43,069.50

Table 4: Actual staffing costs

	Cl assi fi cati on			Cummulative	
Task	PM	RS	LT	Labor	Labor Total
	\$75/hr	\$40/hr	\$44/hr	(hr s)	(\$)
Project Start Up and Analysis	33	29	10	72	\$ 4,075.00
Laboratory Work	125	125	139	389	\$ 20,491.00
Data Collection	21	25	31	77	\$ 3,939.00
Data Analysis	5	20	21	46	\$ 1,749.00
Presentation of Deliverables	8	14	16	38	\$ 1,864.00
Total Service Distribution	192	213	217	622	\$32,468.00

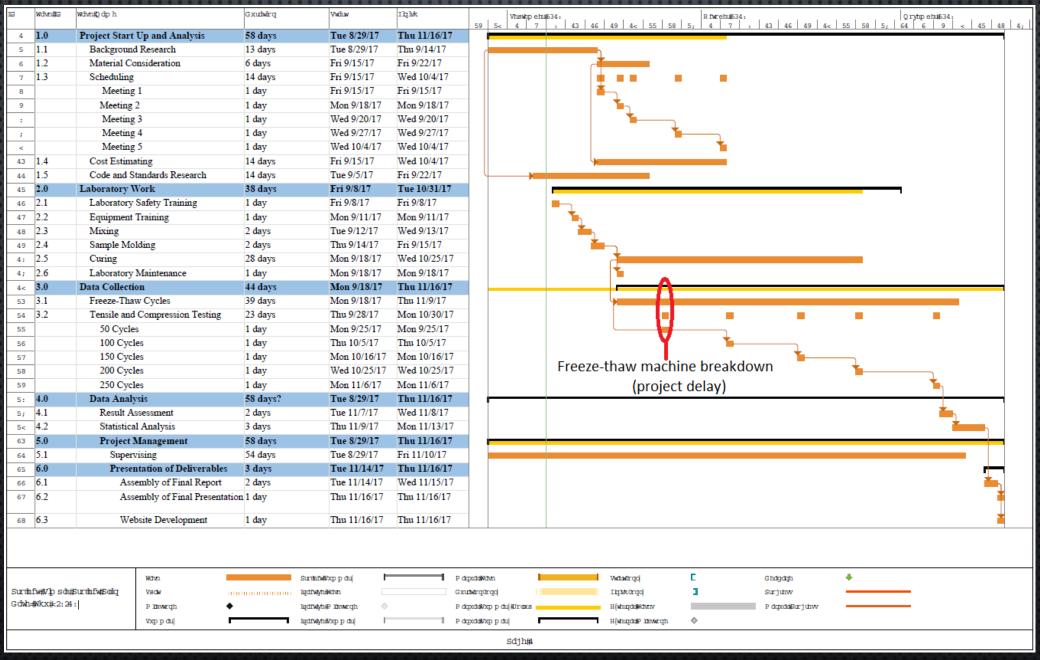


Figure 19: Gantt chart schedule with delays [21]

PROJECT CONTINUATION

Continued by Dr. Ho & a Volunteer Grad Student

> Goals:

- 300 cycles (one year) Tests
- Publish Findings in an Academic Paper

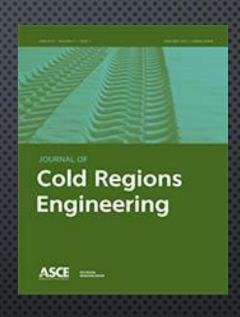


Figure 22: Cold Region magazine cover [15]

Figure 23: Freeze-thaw machine cycling [16]

IMPACTS: SOCIAL & ENVIRONMENTAL

> Economics

- Reduction Cost in repairs
- Transportation of goods

> Social

- Share analytical data for future research
- Accessibility of Nearby Cities
 - Linking two cultures

> Environmental

- Less carbon emissions
- Reduces fuel usage

Figure 20: Chenani-Nashri tunnel connecting between Jammu and Srinagar [24]

REFERENCES

- [1] "Cite a Website Cite This For Me", I.pinimg.com, 2017. [Online]. Available: https://i.pinimg.com/736x/98/f0/90/98f090cc512234475764c5df00a526c8--snow-mountain-mountain-range.jpg. [Accessed: 18-Nov- 2017].
- [2] Researchgate.net, 2017. [Online]. Available: https://www.researchgate.net/profile/Karl_Holter/publication/278156928/figure/fig4/AS:294405341761538@1447203111279/Figure-4-Suggested-design-with-cast-in-place-tunnel-lining-for-modern-two-lane-highway.png. [Accessed: 18- Sep- 2017].
- [3] Kuosa, H., Ferreira M., Leivo M., "Freeze-Thaw Testing," VTT. [Online]. Available: http://www.vtt.fi/inf/julkaisut/muut/2012/VTT-R-07364- 12.pdf
- [4] C. K. NMAI, "COLD WEATHER CONCRETING ADMIXTURES," MASTER BUILDER'S INC., 23700 CHAGRIN BLVD., CLEVELAND, OH, 199
- [5] Bloximages.chicago2.vip.townnews.com. (2017). Cite a Website Cite This For Me. [online] Available at:
 https://bloximages.chicago2.vip.townnews.com/tribdem.com/content/tncms/assets/v3/editorial/5/3a/53a71cca-9b92-11e4-85db-b3047fdf3344/54b5cfd946382.image.jpg [Accessed 18 Nov. 2017].
- [6] BARGER, JOSHUA. (2017). FREEZE-THAW MACHINE. [IMAGE]
- [7] BARGER, JOSHUA. (2017). SANDSTONE SURFACE. [IMAGE].
- [8] GEIER, MITCHELL. (2017). SPECIMEN MODEL. [IMAGE].
- [9] BARGER, JOSHUA. (2017). SAMPLE TRIALS. [IMAGE].
- [10] AVINA, KENYA. (2017). CONCRETE DESIGN MIX PROPORTIONS. [IMAGE].
- [11] QUIKRETE, "PORTLAND CEMENT BASED CONCRETE PRODUCTS," GHS SAFETY DATASHEET, [REVISED JAN. 2016].
- [12] PROPEX, "FIBERMESH 150F SYNTHETIC FIBER," PCS-1145E-002 DATASHEET, [REVISED MAR. 2017].
- [13] EUCLID CHEMICAL, "AKKRO-7T ACRYLIC LATEX LIQUID BONDING ADMIXTURE," AKKRO-7T DATASHEET, [REVISED MAR. 2017].
- [14] BARGER, JOSHUA. (2017). COMPRESSION FAILURE. [IMAGE].
- [15] BARGER, JOSHUA. (2017). SPECIMENS IN FREEZE-THAW MACHINE. [IMAGE].
- [16] AVINA, KENYA. (2017). LOAD ILLUSTRATION. [IMAGE].
- [17] AVINA, KENYA. (2017). SPECIMEN PRIOR TO SPLIT TEST. [IMAGE].
- [18] BARGER, JOSHUA. (2017). SPECIMEN AFTER TO SPLIT TEST. [IMAGE].
- [19] AVINA, KENYA. (2017). STRESS VS. STRAIN. [GRAPH].
- [20] BARGER, JOSHUA. (2017). INTERFACE FAILURES. [IMAGE].
- [21] AVINA, KENYA. (2017). GANTT CHART. [GANTT CHART].
- [22] "Journal of Cold Regions Engineering | ASCE Library", Ascelibrary.org, 2017. [Online]. Available: http://ascelibrary.org/journal/jcrgei. [Accessed: 16- Nov- 2017].
- [23] BARGER, JOSHUA. (2017). THAWED SPECIMENS. [IMAGE].
- [24] Khajuria, R., "PM Inagurates Inaugurates India's Longest Tunnel in J-K: Here are 10 Facts About Chenani-Nashri". [Online]. Available:http://www.hindustantimes.com/india-news/modi-to-inaugurate-india-s-longest-tunnel-10-facts-about-the-engineering-marvel/story-YwLJXwkDDVtc79oJEgvYmO.html
- [25] CE.MEMPHIS.EDU. (2017). CITE A WEBSITE CITE THIS FOR ME. [ONLINE] AVAILABLE AT: HTTP://WWW.CE.MEMPHIS.EDU/1101/NOTES/CONCRETE/GRAPHICS/CONC3.GIF [ACCESSED 17 Nov. 2017].